

How to Use Vehicle Data to AGL

10/18/2017 Yuichi Kusakabe SS Engineering Group FUJITSU TEN LIMITED

- Yuichi Kusakabe (FUJITSU TEN LIMITED)
- Software Engineer of IVI about 10 years (for 16-bit and 32-bit architecture)
- Linux Software Engineer(2011–2013)
- Linux Software Lead Engineer(2013–Now)
- > BSP Porting/Customizing
- > Supporting for in-house software developers
- > AGL(Automotive Grade Linux) Advisory Board member

>What's current problem

Standard Linux CAN IF & OSS CAN Tool

>How to use Vehicle Data to AGL

Support Hardware and Demonstration details

➢Conclusion

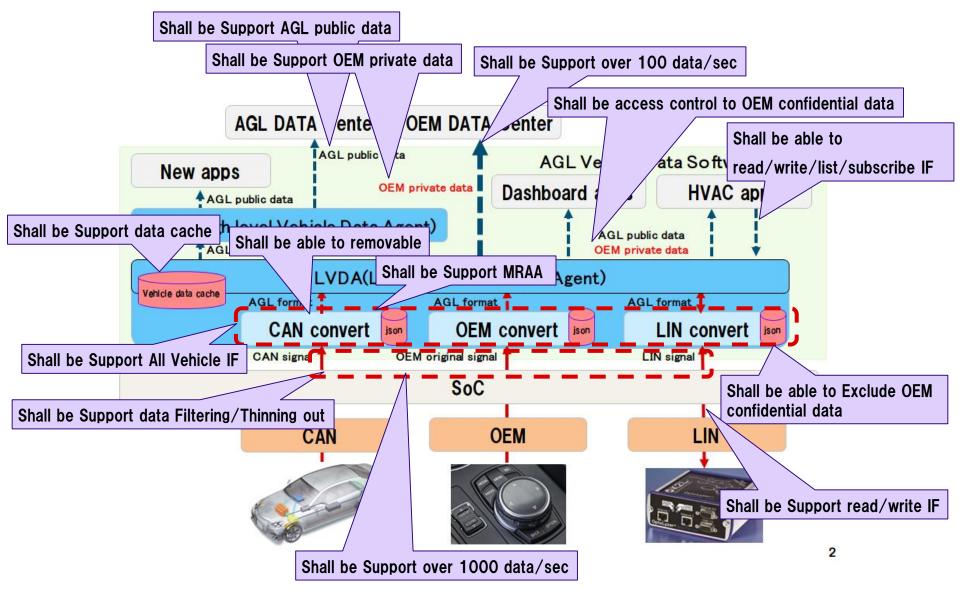
What's current problems

What is current problems

On differences from actual products related to Vehicle data (include kaizen)

□ Apps side

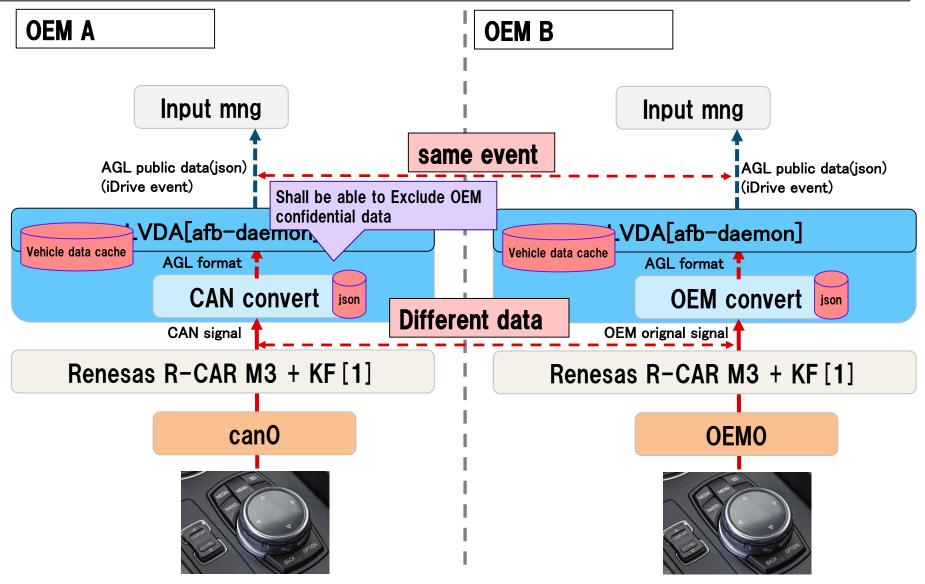
- □ Apps is depend vehicle Low level HW IF
- □ Apps is depend Low level CAN data format
- □ Apps is depend destination requirement
- ->Shall be all vehicle data change to AGL public data provide to Apps


□ MW side

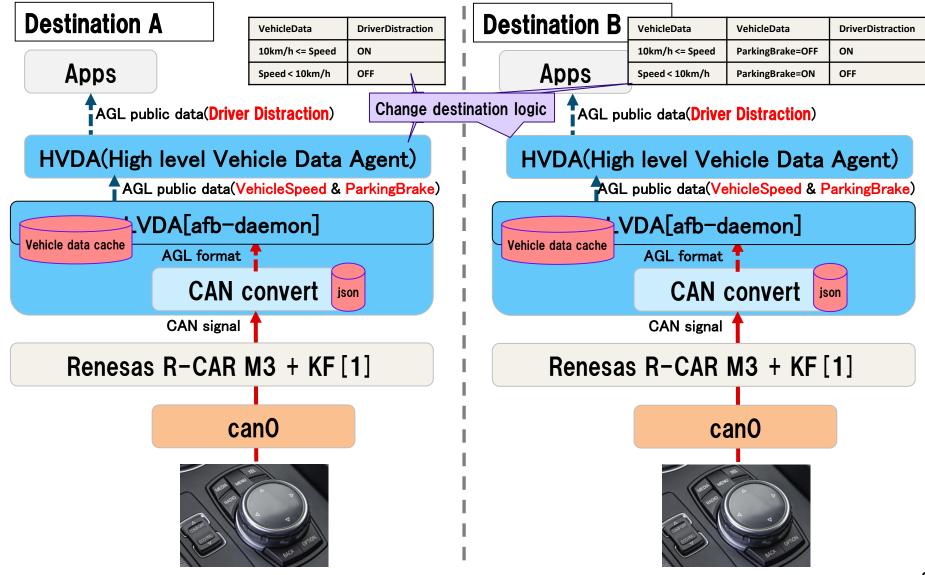
- □ MW need to very high cycle vehicle data received
- □ MW need to support OEM private confidential data
- □ MW need to protect OEM private confidential data
- □ MW need to support many vehicle HW IF
- \square MW need to vehicle data cache
- \square MW need to easy removable vehicle HW IF

□ Data Center side

- □ Data Center need to real time vehicle data.
- □ Data Center need to sync vehicle data when vehicle change offline to online.



U TEN



Provide to same event to Apps from different low level vehicle data.

Apps not depend destination requirement (For example Driver Distraction)

Standard Linux CAN IF & OSS CAN Tool

Standard CAN Signal is Low Speed (500kbps), But High frequency (**us).

Standard CAN Signal format(11bit). Data line: D+/D-/GND(want) Baud rate: 500kbps CAN ID: 11bit(0x000~0x7FF) Data size: 0~8byte CAN Bus load: 20~75%

https://ja.wikipedia.org/wiki/Controller_Area_Network Copyright © 2017 FUJITSU TEN LIMITED. All rights reserved. SU TEN

Standard Linux CAN IF(SocketCAN) FUJITSU TEN

Linux kernel all ready CAN IF with Socket CAN

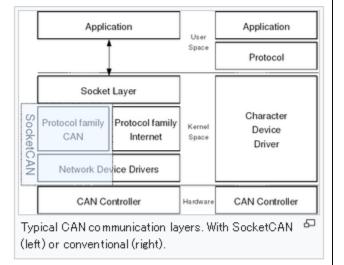
SocketCAN

AUTOM TIVE GRADE LINUX

From Wikipedia, the free encyclopedia

SocketCAN is a set of open source CAN drivers and a networking stack contributed by Volkswagen Research to the Linux kernel. Formerly known as *Low Level CAN Framework* (LLCF).

Traditional CAN drivers for Linux are based on the model of character devices. Typically they only allow sending to and receiving from the CAN controller. Conventional implementations of this class of device driver only allow a single process to access the device, which means that all other processes are blocked in the meantime. In addition, these drivers typically all differ slightly in the interface presented to the application, stifling portability. The SocketCAN concept on the other hand uses the model of network devices, which allows multiple applications to access one CAN device simultaneously. Also, a single application is able to access multiple CAN networks in parallel.


The SocketCAN concept extends the Berkeley sockets API in Linux by introducing a new protocol family, PF_CAN, that coexists with other protocol families like PF_INET for the Internet Protocol. The communication with the CAN bus is therefore done analogously to the use of the Internet Protocol via sockets. Fundamental components of SocketCAN are the network device drivers for different CAN controllers and the implementation of the CAN protocol family. The

protocol family, PF_CAN, provides the structures to enable different protocols on the bus: Raw sockets for direct CAN communication and transport protocols for point-to-point connections. Moreover the broadcast manager which is part of the CAN protocol family provides functions e.g. for sending CAN messages periodically or realize complex message filters.

Patches about CAN were added in the 2.625 Linux kernel. Meanwhile some controller drivers were added and work is going on to add drivers for a variety of controllers.

https://en.wikipedia.org/wiki/SocketCAN

Copyright © 2017 FUJITSU TEN LIMITED. All rights reserved.

Free software portal

11

Standard Linux CAN IF(CAN Driver)

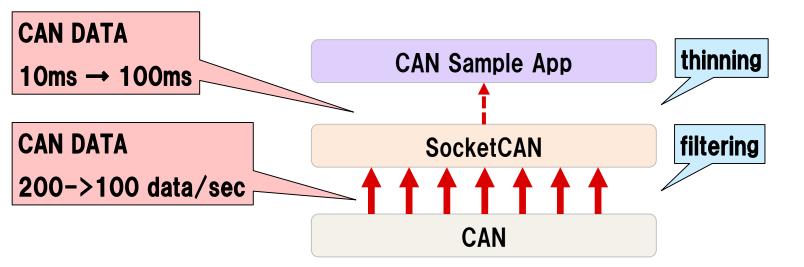
Linux kernel all ready CAN IF with Socket CAN

Readme file for the Controller Area Network Protocol Family (aka SocketCAN)
This file contains
1 Overview / What is SocketCAN
2 Motivation / Why using the socket API
3 SocketCAN concept 3.1 receive lists 3.2 local loopback of sent frames 3.3 network problem notifications
 4 How to use SocketCAN 4.1 RAW protocol sockets with can_filters (SOCK_RAW) 4.1.1 RAW socket option CAN_RAW_FILTER 4.1.2 RAW socket option CAN_RAW_ERE_FILTER 4.1.3 RAW socket option CAN_RAW_ERE_VOWN_MSGS 4.1.4 RAW socket option CAN_RAW_FD_FRAMES 4.1.5 RAW socket option CAN_RAW_JOIN_FILTERS 4.1.6 RAW socket returned message flags 4.2 Broadcast Manager protocol sockets (SOCK_DGRAM) 4.2.1 Broadcast Manager message flags 4.2.3 Broadcast Manager message flags 4.2.4 Broadcast Manager receive filter timers 4.2.5 Broadcast Manager message sequence transmission 4.2.6 Broadcast Manager multiplex message receive filter 4.2.7 Broadcast Manager CAN FD support 4.3 connected transport protocols (SOCK_DGRAM)
5 SocketCAN core module 5.1 can.ko module params 5.2 procfs content 5.3 writing own CAN protocol modules

CONFIG_CAN=y CONFIG_CAN_RAW=y CONFIG_CAN_BCM=y CONFIG_CAN_GW=y CONFIG_CAN_RCAR=y

https://www.kernel.org/doc/Documentation/networking/can.txt

AUTOM TIVE GRADE LINUX **FUITSU TEN**



FUJITSU TEN

CAN ID Filtering and CAN DATA Thinning out is very important

CAN signal filtering(setting SocketCAN) CAN ID xxx -> xx CAN signal thinning out

CAN cycle xx ms -> xxx ms

OSS CAN Tool(Powerful software)

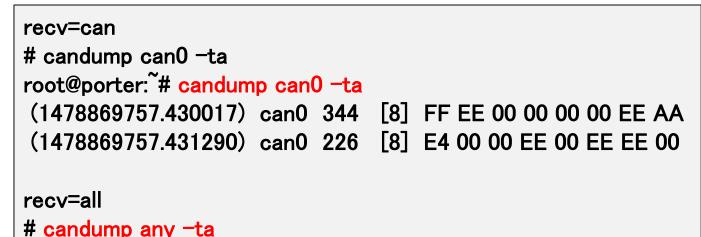
can-utils easy to debug CAN Signal (read/write/play)

📮 linux-can / can-u t	tils	O Unwatch	h ▼ 60 ★ Star 229 % Fork 110
♦ Code (!) Issues	1 1 Pull requests 2 Projects 0	🛾 Wiki 🛛 👍 Pulse 🔄 📊 Graphs	
Linux-CAN / SocketCA	N user space applications		
🕞 300 comm	iits	♡ 0 releases	18 contributors
Branch: master New	pull request	Create new file	Upload files Find file Clone or download -
📓 jihochu committed w	vith hartkopp bcmserver: allow CAN netdevice names grea	ater than 6 characters	Latest commit 99 f 1664 19 days ago
config/m4	add autotools infrastructure		7 years ago
include/linux	bcm: add support for CAN FD frames		4 months ago
.gitignore	gitignore: add isotpperf		2 years ago
Android.mk	can-utils: added isotpperf tool for perform	nance measurements	2 years ago
GNUmakefile.am	configure: switch to new libtool-2.0 macro)	2 years ago
Makefile	can-utils: added isotpperf tool for perform	nance measurements	2 years ago
README.md	Create README.md		a year ago
asc2log.c	janitorial: asc2log: properly close infile		2 years ago
autogen.sh	do not usesymlink for autoreconf		3 years ago

https://github.com/linux-can/can-utils

Copyright © 2017 FUJITSU TEN LIMITED. All rights reserved.

FUJITSU TEN


OSS CAN Tool(Powerful software)

CAN data send (cansend)

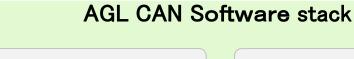
ID=333(11bit), DATA=33 send=can0 # cansend can0 333#33

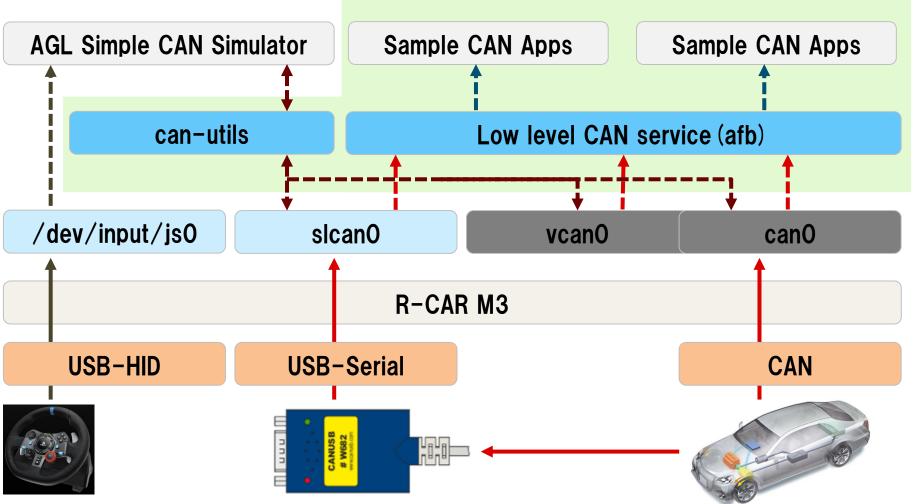
ID=00004444(24bit), DATA=44 send=can0 # cansend can0 00004444#44

CAN data recv (candump)

U TEN

How to use Vehicle Data to AGL


Low level CAN service made to decode and write on CAN bus


		ATION COLLABORATIVE PROJECTS			
			Account signup Wiki Jira	Doors Gerrit Jenkir	ns Mailing lists
Code R	eview / a	pps / low-level-can-service.gi	t / summary		
summary	shortlog log	commit commitdiff review tree		cor	nmit 🔻 ? search
description	Low level CAN	I service made to decode and write on CAN bus.			
owner	Gerrit Service	User			
last change	Thu, 25 May 2	2017 01:38:54 +0900 (18:38 +0200)			
URL	https://gerrit.	automotivelinux.org/gerrit/p/apps/low-level-car	n-service.git		
	ssh://kusakab	e@gerrit.automotivelinux.org:29418/apps/low-	level-can-service.git		
shortlog					
2 days ago	Romain Forlot	Fix: file already exists on build demo app	naster 3.99.1 dab/3.99.1 dab_3.99.1	commit commitdiff tree	snapshot
2 days ago	Romain Forlot	Update config.cmake path		commit commitdiff tree :	snapshot
2 days ago	Romain Forlot	Cmake WIP		commit commitdiff tree	snapshot
2 days ago	Romain Forlot	Move and update app-templates submodule	9	commit commitdiff tree	snapshot
3 days ago Romain Forlot Close diagnostic manager socket if there isn't any sandbox/claneys/import commit commitdiff tree snapshot					
3 days ago	Romain Forlot	Initialize the new socket member.		commit commitdiff tree :	snapshot
3 days ago	Romain Forlot	Fix memory leaks		commit commitdiff tree	snapshot
3 days ago	Romain Forlot	Be able to copy active diagnostic request of	pjects with	commit commitdiff tree :	snapshot
3 days ago	Romain Forlot	Static code review fixes.		commit commitdiff tree :	snapshot
3 days ago Romain Forlot Fix a dependency problem with populate htdocs targets. commit commitdiff tree snapshot					

https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/low-level-can-service.git;a=summary

AGL support easy to use CAN data

SU TEN

CAN and vehicle signaling workshop FUJITSU TEN

Transport as a plugin

We all agree on separation of the transport layer from low-level CAN binding and to load it as a plugin depending on the need of the binding.

Doing that, one can reuse the base of low-level binding and just plug a custom transport layer to be able to communicate with different protocols and devices, like LIN, OEM specific hardware, GPS, ...

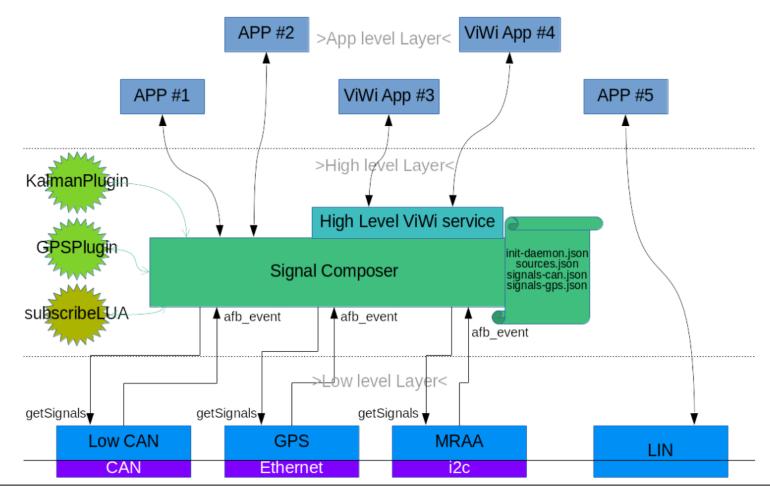
Transport layer should be a library loaded dynamically at binder startup. <u>API</u> between binding and plugin is defined based on work on CAN binding and enriched with a new proprietary transport plugin defined by Yuichi Kusakabe and Romain Forlot. Also, MRAA could be a great idea to be integrated and should be done by Brendan as he is the lead on that topic.

So far, a transport plugin only needs to implement simple functions: 'open'/'close'/'read'/'write'. Configuration has to made by sending a header message with or without can_data, just like a BCM CAN socket is configured (see [1][2]).

High level binding

Second, we need a "high" level binding that should understand signals coming from different sources. As we separate transport from binding, this is natural to think that we need to gather and be able to compose higher signals from the raw signals provided by the low level.

This make use of C functions or LUA functions callback/handler to react from subscribed signal. Callback/handler should take care of subscribing part and action to take at signal reception time. This way, we can address different low level binding with different transport layer as well as different binding like GPS. Reactive programming patterns will be probably very useful to write an efficient high level binding: some frameworks like ReactiveX could be used.



AGL New Vehicle Data Software stack

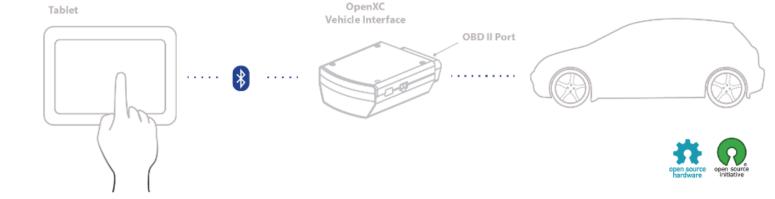
[∞] Signal Composer

Architecture

Here is a quick picture about the signaling architecture :

Copyright © 2017 FUJITSU TEN LIMITED. All rights reserved. https://github.com/iotbzh/afb-signal-composer

FUITSU TEN



The OpenXC Platform

OpenXC[™] is a combination of open source hardware and software that lets you extend your vehicle with custom applications and pluggable modules. It uses standard, well-known tools to open up a wealth of data from the vehicle to developers, even beyond OBD-II.

OpenXC is an open source hardware and software platform that lets you extend your vehicle with custom applications and pluggable modules.

What is OpenXC™?

OpenXC[™] is an open source, data-focused API for your car. By installing a small hardware module, the vehicle data becomes accessible to Android or other desktop applications using the OpenXC library.

OpenXC Overview

http://openxcplatform.com/

Unlocking Rich Vehicle Data

OpenXC[™] allows consumer devices, such as smart phones, to access data from any vehicle. Using OpenXC[™], you can monitor many of the sensors on a vehicle, enabling new and innovative vehicle-centric applications. Some data is required by law and more can be unlocked with support from an automaker - or a little reverse engineering effort!

See the Data

TEN

Public CAN protocol(OpenXC)

Official Signals

These signal names are a part of the OpenXC specification, although some manufacturers may support custom message names.

- steering_wheel_angle
 - numerical, -600 to +600 degrees
 - 10Hz
- torque_at_transmission
 - numerical, -500 to 1500 Nm
 - 10Hz
- engine_speed
 - numerical, 0 to 16382 RPM
 - 10Hz
- vehicle_speed
 - numerical, 0 to 655 km/h (this will be positive even if going in reverse as it's not a velocity, although you can use the gear status to figure out direction)
 - 10Hz
- accelerator_pedal_position
 - percentage
 - 10Hz
- parking_brake_status
 - boolean, (true == brake engaged)
 - 1Hz, but sent immediately on change

https://github.com/openxc/openxc-message-format

19 CAN Data

Daimler AG Daimler Buses - EvoBus GmbH MAN Truck & Bus AG Scania AB Scania CV Volvo Truck Corporation Volvo Bus Corporation Renault Trucks Iveco SpA DAF Trucks N.V. VDL Bus & Coach B.V.

FMS-Standard description

Version 03

14.09.2012

© HDEI / BCEI Working Group

 $http://www.fms-standard.com/Truck/down_load/fms_document_ver03_vers_14_09_2012.pdf$

Public CAN protocol(FMS)

			(signal) name	Mandatory	rep. rate	e remarks / comments		
page	PGN	SPN	e.g. milage, fuel consumption	Truck only	in ms			
page		D Bus Sectio		Truck AND Bus S		Truck AND Bus Section Truck AND Bus Section	Truck AND Bus Section Truck AND Bus Section	
7	65257	250	Engine total fuel used	THUCK AND DUS 3	1000	4 bytes, 0 to +2 105 540 607,5 L	Might be set to "not available" if SPN 5054 is available	
8	65276	250	fuel level 1	X (worldwide)	1000	1 Byte	Might be set to not available in SPN 5054 is available	
9	61444	513	Actual Engine – Percent Torque	X (worldwide)	20	1 % / Bit, -125 % offset		
9		190			20		-	
-	61444		engine speed	X (worldwide)		2 Byte, 0-8031,875 rpm	•	
10	65253	247	Engine total hours of Operation	X (worldwide)	1000	4 bytes, 0 to 210 554 060,75 h	Counter is Engine running dependant	
11	65260	237	vehicle identification number	X (worldwide)	10000	variable, max 200 char.	Will be sent every 10 sec	
12	64977	2806	SW-version supported	X (worldwide)	10000	Indicator for SW version supported	•	
12	64977	2804	Diagnostics supported	X (worldwide)	10000	indicator for diagnosis session support	•	
12	64977	2805	Requests supported	X (worldwide)	10000	indicator for request supported	•	
14	65217	917	High resolution total vehicle distance	X (worldwide)	1000	4 bytes, 0 - 21 055 406 km; without TCO	Resolution may be not within the SAE values	
15	65132	1611	Vehicle motion	X (EU)	20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1613	driver 2 working state	X (EU)	20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1612	driver 1 working state	X (EU)	20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1614	Vehicle overspeed		20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1617	Driver 1 time rel. states		20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1618	Driver 2 time rel. states		20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1615	Driver 1 card	X (EU)	20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1616	Driver 2 card	X (EU)	20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1619	Direction indicator		20/50	With digital tachograph	rep. rate / availability is tachograph dependant.	
15	65132	1620	Tachograph performance	X (EU)	20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1621	Handling information	X (EU)	20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1622	System event	X (EU)	20/50	With digital tachograph	rep. rate tacho dependant	
15	65132	1624	Tachograph vehicle speed	X (EU)	20/50	With digital tachograph - 2 bytes	rep. rate tacho dependant/might differ from the wheel based speed	
17	65262	110	engine coolant temperature	X (worldwide)	1000	+40° to 210°	rep. rate tauto dependano nigrit uner nom tre wheer based speed	
18	65269	171	Ambient Air Temperature	X (worldwide)	1000	0.03125 °C / Bit gain	273 C offset	
19	65131	1625/1626	Driver 1 / Driver 2 Identification	X (EU)	10000	If a driver ID is available the message is sent with a Broadcast Announce	Diff. to SAE: broadcast instead of on request	
						Message (BAM)	•	
20	65266	183	Fuel rate	X (worldwide)	100	0.05 L/h per bit, 0 to 3,212.75 L/h	Calculated values given as indications, not as contractual	
20	65266	184	Instantaneous Fuel Economy	X (worldwide)	100	1/512 km/L per bit, 0 to 125,5 km/L	Calculated values given as indications, not as contractual	
21	65198	1087	Service Brake Air Pressure Circuit #1	X (worldwide)	1000	8 kPa/Bit, 0 offset		
21	65198	1088	Service Brake Air Pressure Circuit #2	X (worldwide)	1000	8 kPa/Bit, 0 offset		
22	64777	5054	High resolution engine total fuel used		1000	0.001 L/bit, 0 to 4,211,081.215 L	Is implemented if technical possible	
23	65110	1761	Aftertreatment 1 Diesel Exhaust Fluid Tank 1 Level		1000	0.4 %/bit, 0 % offset		
24	64893		FMS Tell Tale Status	X (worldwide ,EU) Not all tell tales	1000		4 blocks => Rep.rate for each tell tale status is 4 sec	
Tru	ck only Se	ection	Truck only Section T	ruck only Section		Truck only Section Truck only Section	Truck only Section Truck only Section	
27	65265	84	wheel based speed		100	may differ from TCO1	•	
27	65265	598	clutch switch		100	two bit status	in trucks with automatic gear => send as not available	
27	65265	597	Brake switch		100	two bit status		
27	65265	595	cruise control active		100	two bit status	in trucks with no cruise control => send as not available	
27	65265	976	PTO state		100	Either SPN 3948 (PTODE) or SPN 976 is sent	SPN 3948 (PTO DE) message is preferred	
29	61443	91	accelerator pedal position 1	X (worldwide)	50	1 Byte		
29	61443	92	Engine Percent Load At Current Speed	X (worldwide)	50	1 % / bit, 0 to 125 % operational range		
30	65258	928	Axle location	A (nonumue)	1000	r ter bit, o to 120 te operational range	If info of more axles available it will be updated with each repetition	
30	65258	928	Tire location		1000			
						•	•	
30	65258	582	Axle weight		1000		•	
32	65216	914	Service distance		1000			
33	64932	3948	At least one PTO engaged		100	Either SPN 3948 or SPN 976 (CCVS) is sent	SPN 3948 (PTO DE) message is preferred	
34	65136	1760	Gross Combination Vehicle Weight		10000	0 to 642,550 kg Diff. to SAE: broadcast instead of on request		
35	61440	900	Retarder Torque Mode		100	16 states/4 bit, 0 offset	•	
35	61440	520	Actual Retarder - Percent Torque		100	1 %/bit, -125 % offset	•	
35	61440	1716	Retarder Selection, non-engine		100	0.4 %/bit, 0 % offset	The value is related to the drive line retarder	

56 CAN Data (include Bus)

http://www.fms-standard.com/Truck/down_load/fms_document_ver03_vers_14_09_2012.pdf

FUITSU TEN

Collaborate with the Reference Hardware System Architecture Expert Group

AGL	Public Vehicle Data						
Refe	rence to						
https	s://rawgit.com/w3c/au	tomotive-bg/ma	aster/snapshots/da	ata_spec_snapshot_lat	<u>est.html</u>		
				A	GL Reference	Data	
No	Data label(Apps side)	value	AGL Reference IF	ID	Length	Data	cycle(ms)
	1 VehicleSpeed	unsigned short	CAN	0x010	2	**,**	16
	2 GearPosition	unsigned char	CAN	0x100	1	**	64
	3 LightStatus	unsigned short	CAN	0x200	2	**,**	100
	4 Seatbelt;	unsigned short	CAN	0x300	2	**,**	200
	5 FuelInterface	unsigned short	CAN	0x400	2	**,**	1,000
	6 EngineSpeed	unsigned long	CAN	0x011	4	**,**	16

Reference to w3c, OpenXC and FMS Vehicle data

FUITSU TEN

Hardware and Demonstration details

AGL reference Hardware to Renesas R-CAR M3

http://elinux.org/R-Car/Boards/

Copyright © 2017 FUJITSU TEN LIMITED. All rights reserved.

R-CAR Gen3 Expansion board

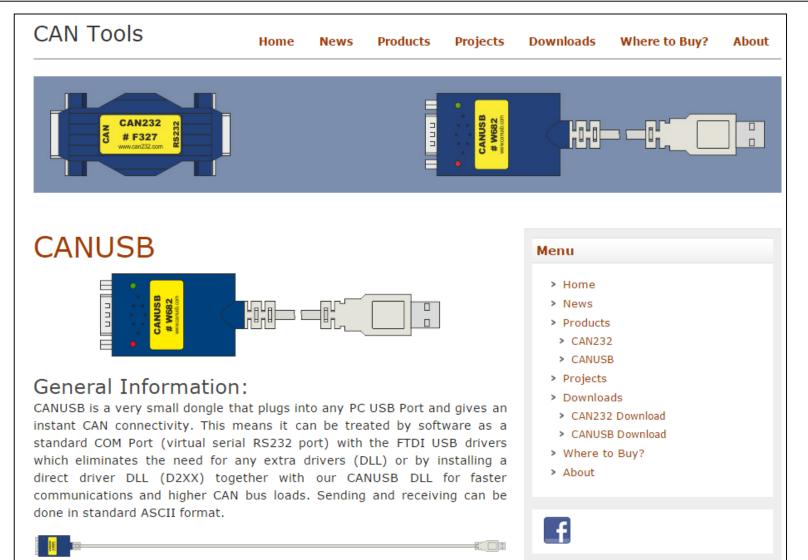
R-CarスタータキットがAutomotive Grade Linux の標準リファレンスプラットフォームに採用、次 世代コネクテッドカーのIVI開発を加速

~最新のUnified Code Base(UCB)3.0の64ビットソフトウェア環境に対応~

2017年05月24日 ルネサス エレクトロニクス株式会社

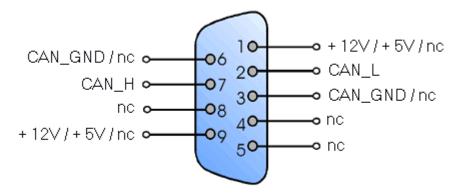
R-CarスタータキットがAGLの標準リファ レンスに採用 ルネサスエレクトロニクス株式会社 (代表取締役社長兼CEO:呉文精、以下 ルネサス)は、このたびR-Carスタータキ ットが、Linuxベースの車載情報機器のオ ープンソースプロジェクトAutomotive Grade Linux (AGL)のソフトウェア開発 用標準リファレンスプラットフォームの 1つに採用されたことを発表しました。 これにより、同プロジェクトが開発した ソフトウェアを動かすハードウェア環境 を容易に入手可能となり、コネクテッド カー時代に向けて、IVI (In-Vehicle

Infotainment) 用アプリケーションソフト こまた、このたびR-Carスタータキットと組み合わせて使用するIVI開発用拡張ボード2 Carスタータキットは、すでにAGLプロジ 種類(シマフジ電機社製)が7月より発売されます。拡張ボードのスタンダードモデ いは、マルチディスプレイや各種ネットワーク用インタフェースを搭載、さらにアド 来の32ビット環境に比べて、コンテナ技術 シームレスに車載向けへ応用可能となる最 できるインタフェースを装備しています。

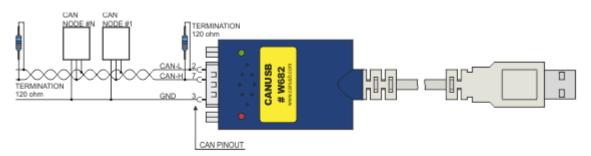

https://www.renesas.com/ja-jp/about/press-center/news/2017/news20170524.html

Copyright © 2017 FUJITSU TEN LIMITED. All rights reserved.

CANUSB easy connect CAN IF



http://www.can232.com/?page_id=16



CANUSB connected CAN IF simple Hardware

CAN Pin assignement:

Pin assignement according to CiA recommendations DS102-1. The CANUSB is powered from USB port, so no need to connect external power on pin 9. Use only CAN_L (pin2), CAN_H (Pin7) and CAN_GND (pin3).

The picture above shows how to connect the CANUSB (<u>click here</u> for a larger view). No external power is needed, the CANUSB uses 5VDC/100mA from USB.

http://www.can232.com/?page_id=16

TEN

Add Kernel defconfig CAN driver and CANUSB

CONFIG_CAN=y CONFIG_CAN_VCAN=y CONFIG_CAN_RCAR=y <- Renesas board only CONFIG_CAN_SLCAN=y CONFIG_USB_SERIAL=y CONFIG_USB_SERIAL_FTDI_SIO=y

Add rootfs "can-utils" and "iproute2"

yocto local.conf
IMAGE_INSTALL_append = " can-utils iproute2"

Setup CAN and CANUSB

CAN0

ip link set can0 type can bitrate 500000

ip link set can0 up

CANUSB

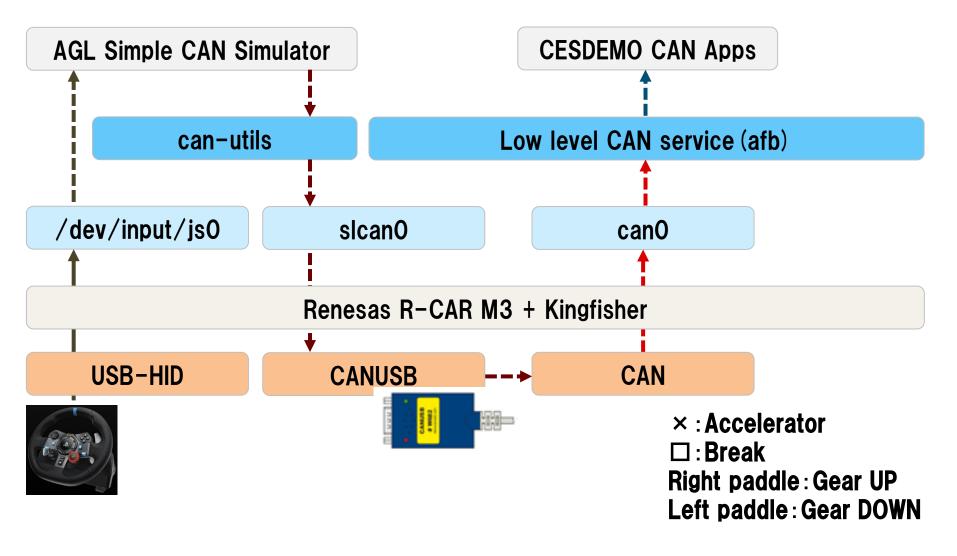
slcand -o -s 6 -t hw /dev/ttyUSB*

ip link set slcan0 up

Start Low level CAN service (afb-deamon)

./afb-daemon ---token=\${AFB_CANIVI_TOKEN} ---Idpaths=. | ---port=\${AFB_CANIVI_PORT}- | ---rootdir=. \${SERVICE_VERBOSE}

Setting CAN data receive


./afb-client-demo ws://localhost:5555/api?token=3210

```
low-can subscribe { "event" : "*" } <- receive all data</pre>
```

low-can subscribe { "event" : "VehicleSpeed" } <- receive Vehicle Speed only</pre>

AGL Vehicle CAN Demonstration

R-CAR M3 board running AGL CAN Simulator and Low level CAN service (afb)

U TEN

Performance measurement result

➢ Data used for measurement

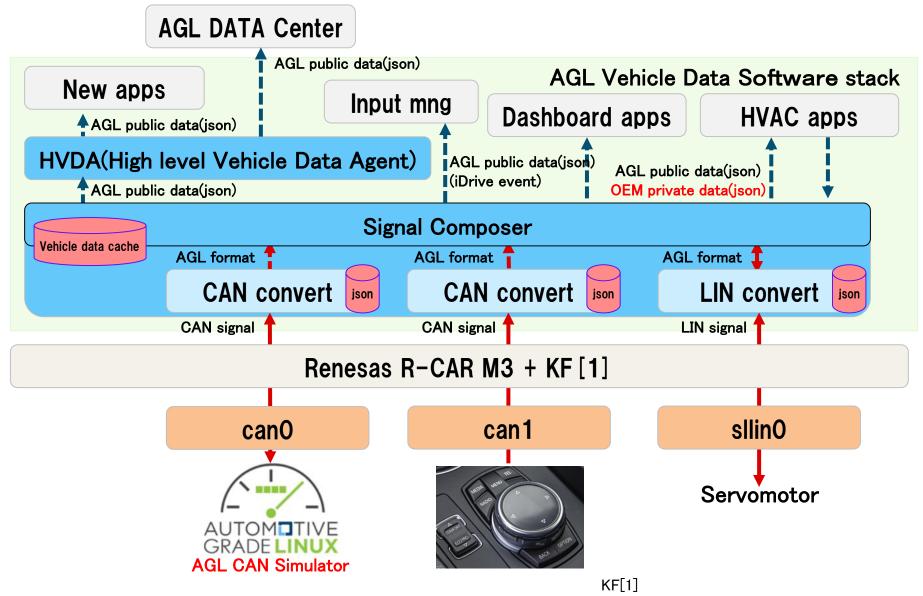
 \geq logtime = 1122 sec,

>CAN ID cnt = 129, datacnt = 1042673

>can load ave= 19.04%, min = 18.82%, max = 37.89%

>cyc ave[us] = 929, min = 8, max = 8565

Support CAN ID 42, Thinning out time ** -> 100ms


	AFB (websocket)				
	Process name	CPU load(%)			
Service	afb−daemon	1.34			
Client(App)	afb-client- demo	0.82			
CAN Sim	canplayer	1.51			
Total	*	3.67			

Next step

Copyright © 2017 FUJITSU TEN LIMITED. All rights reserved

U TEN

Linux Kernel all ready use to vehicle CAN IF

>OSS CAN Tool "can utils" is good software

>AGL support easy to use Vehicle CAN data

≻Next step

Define AGL public Vehicle CAN data format

 With the cockpit architecture team

 AGL simple CAN simulator provide
 Support all in-vehicle communication

Thank you!!! yuichi.kusakabe@jp.fujitsu.com

Copyright © 2017 FUJITSU TEN LIMITED. All rights reserved.